

DARTMOUTH

Main Contributions

- ✓ Introducing the Prompt-Transformer (P-Former), a model that predicts these ideal prompts, which is trained exclusively on linguistic data, bypassing the need for image-text pairings.
- Our experiments reveal that our framework significantly enhances the performance of BLIP-2, and effectively narrows the performance gap between models trained with either 4M or 129M image-text pairs.
- Our framework is modality-agnostic and flexible in terms of architectural design, as validated by its successful application in a video learning task using varied base modules.

Background

[1] Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." NeurIPS, 2022. [2] Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models." ICML 2023.

Bootstrapping Vision-Language Learning with Decoupled Language Pre-training Yiren Jian¹, Chongyang Gao² and Soroush Vosoughi¹

(1) Dartmouth College (2) Northwestern University.

• The P-Former training resembles an autoencoder, with the bidirectional P-Former as the encoder and a causal LLM (frozen) as the decoder. • The objective is to reconstruct input text auto-regressively. [CLS] representation serves as sentence embeddings, which are projected back

• This training process is purely based on text, allowing the P-Former to benefit from text outside the image-text pair dataset.

Training of Prompt-Transformer

Experimental Results VQAv2 **#Pretrain** Pretrain Models Uni-Text Image-Text val test-dev FewVLM [24] 9.2M 47.7 3M 29.6 Frozen [56] 44.5 3M 42.6 VLKD [9] 1.8B 49.2 Flamingo3B [2] -OPT_{2.7B} BLIP-2 [34] 45.6 4M 46.8 <u>52.6</u> 4M <u>52.2</u> OPT_{2.7B} Ours $OPT_{2.7B} BLIP-2^{\dagger} [34]$ 53.5 129M 52.3 NoCaps Zero-shot (valid #Pretrain Models in-domain near-domain out-do Image-Text OSCAR [38] 4MVinVL [69] 5.7M 13.8 88.3 103.1 14.2 96 1 129M BLIP [33] 114.9 15.2 115.3 112.1 14.9 OFA [58] 20M Flamingo [2] 1.8B 113.7 110.9 SimVLM [61] 115.2 1.8B -_ OPT_{2.7B} BLIP-2 [34] 115.3 15.0 111.0 14.6 112.5 4M4MOPT_{2.7B} Ours OPT_{2.7B} BLIP-2[†] [34] 129M VQAv2 OK-VQA GQA $\omega_1 \,\,\omega_2$ Mode test-dev test 25.9 30.5 46.8 0 0 Flan- $\frac{29.2}{28.7}$ 32.8 <u>51.4</u> 10 0 Flan-50.4 33.0 0 100 Flan-T 34.0 52.6 30.0 10 100 Ablations on w1 and w2 (using OPT 2.7B). ^r #Pretrain |VQAv2 OK-VQA GQA P-Former Sentences test-dev val test 25.9 30.5 46.8 <u>51.7</u> **52.6** <u>28.2</u> **30.0** <u>32.3</u> **34.0** 4M12M Ablations on sentence datasets used to train P-Former (using OPT 2.7B).

and X-to-language connection modules.

OK-VQA	GQA	
test	test-dev	
16.5	29.3	
5.9	-	
13.3	-	
41.2	-	
25.9	30.5	•
<u>30.0</u>	<u>34.0</u>	
31.7	34.6	
ation set)		C
omain	overall	

Comparison with different methods on zero-shot VQA.

Our framework significantly
enhances the zero-shot VQA
performance of BLIP-2 trained with
4M image-text pairs.

ation set) main overall		COCO Fine-tuned Karpathy test		
S	С	S	B@4	С
_	80.9	11.3	37.4	127.8
12.1	95.5	13.5	38.2	129.3
14.4	113.2	14.8	40.4	136.7
-	-	-	43.9	145.3
-	-	-	_	138.1
-	112.2	-	40.6	143.3
14.0	111.9	14.5	41.8	140.4
14.1	115.1	14.8	42.3	141.8
15.1	119.7	15.4	43.7	145.8

Comparison with different methods on NoCaps and COCO. All methods optimize the CE loss during fine-tuning. C: CEDEr, S: SPICE B: BLEU

ls	#Pretrain Image-Text	VQAv2 val	OK-VQA test	GQA test-dev
$\Gamma 5_{\rm XL} \text{ BLIP-}2^{\ddagger}$	4M	48.3	31.5	36.4
$\Gamma 5_{\rm XL} \text{ ours}^{\ddagger}$	4M	<u>54.9</u>	<u>35.7</u>	<u>40.3</u>
$\Gamma 5_{\rm XL}$ BLIP-2 [†]	129M	62.6	39.4	44.4

Experiments	using	Flan-	[5]	XI.
Lyberments	using	I Iall-	J	ΛL.

	BLEU-4	CIDEr	ROUGE
NITS-VC [53]	20.0	24.0	42.0
ORG-TRL [71]	32.1	49.7	48.9
$\frac{\mathcal{L}_{\text{ITG}}}{\mathcal{L}_{\text{ITG}} + \mathcal{L}_{\text{alignment}}}$	29.3	56.6	48.2
	30.9	60.9	49.1

VATEX English video caption. Baseline is a sequential model, training end-to-end with ITG.