

Expedited Training of Visual Conditioned Language Generation via Redundancy Reduction Yiren Jian¹, Tingkai Liu², Yunzhe Tao², Chunhui Zhang¹, Soroush Vosoughi¹, and Hongxia Yang²

DARTMOUTH

Main Contributions

- ✓ For **reducing vision redundancy** within the vision language connector, we adopt **Token Merging**, initially designed to enhance ViT inference speed without training. Concurrently, we present a novel temporal token contextualization scheme for video modeling.
- ✓ Compared with BLIP-2, while requiring just a fraction of the computational resources
- ✓ We introduce a straightforward spatial attentive temporal modeling technique that allows for the seamless adaptation of pre-trained image-text models to video tasks.

(1) Dartmouth College (2) ByteDance Inc.

This inherent characteristic facilitates EVLGen's ability to converge quickly in ar

EVLGen-video: For more spatial redundancy, temporal contextualize can pool multiple frames, then add back to each original frame.

Experimental Results

atures training. n end-	

Models	# pre-train image-text	# trainable params	# stage-1 steps	# stage-2 steps	VQAv2 val	GQA test-dev	OK-VQA test	COCO val	Clock time
VL-T5	9.2M	224M	-	-	13.5	6.3	5.8	-	-
FewVLM	9.2M	740M	-	-	47.7	29.3	16.5	-	-
Frozen	3M	40M	-	-	29.6	-	5.9	-	-
VLKD	3M	406M	-	-	42.6	-	13.3	-	-
BLIP-2	$104 M^{\dagger}$	110 M+ [‡]	-	80k/250k*	×	×	×	×	X
BLIP-2	104M	110M+	250k	80k	44.6	30.6	26.0	137.7	234 hrs
EVL _{Gen}	104M	55M	-	90k	45.9	30.6	25.8	134.0	47 hrs
EVL _{Gen}	$11 \mathbf{M}^{\dagger}$	110 M	-	150k	46.3	30.0	23.0	135.1	80 hrs
EVL _{Gen}	104M	110 M	-	150k	46.9	30.8	24.8	137.0	80 hrs
EVL _{Gen}	104M	110M	-	250k	48.4	30.9	27.2	139.1	133 hrs

Comparison of methods on zero-shot VQA and MSCOCO captioning (CIDEr) tasks without additional finetuning. Both BLIP-2 and EVLGen use OPT-2.7b as the LLM decoder. * : BLIP-2 without extensive stage-1 pretraining will collapse.

	LLM	Model	С	B4	М	R
Caps	OPT	BLIP-2 EVL _{Gen}	112.2 117.4	44.4 45.9	29.5 30.3	59.7 61.1
NoC	Vicuna	BLIP-2 EVL _{Gen}	115.6 119.0	45.3 45.9	30.3 30.6	60.6 61.5
r30K	OPT	BLIP-2 EVL _{Gen}	77.1 82.0	28.7 30.0	23.9 24.5	51.6 52.4
Flick	Vicuna	BLIP-2 EVL _{Gen}	80.0 81.8	30.1 30.3	24.8 24.5	52.1 52.2

Models	С	B4	М	R
Baseline (concat)	65.5	44.4	31.9	64.1
Baseline (mean)	67.8	47.3	32.2	65.0
EVL _{Gen} -image	68.4	47.6	32.4	65.3
EVL _{Gen} -video	69.8	48.3	32.6	65.8
EVL _{Gen} -video-scst	74.0	49.2	33.0	66.5
Video-LLaMA	59.3	47.7	29.6	63.7
VideoChat	58.0	46.5	29.5	63.4
VideoCoCa (open)	63.0	48.5	31.4	64.8

Comparison of different models' performance on zero-shot NoCaps and Flickr30K Captioning.

Comparison of different models' performance on MSR-VTT video captioning.

Trade-off between MSCOCO captioning scores (depicted in red) and GPU training time (depicted in blue) as a function of the number of tokens merged (r) in TomeFormer.