Expedited Training of Visual Conditioned Language Generation via Redundancy Reduction

Yiren Jian^{1*}, Tingkai Liu², Yunzhe Tao², Chunhui Zhang¹,, Soroush Vosoughi¹, Hongxia Yang²

1. Dartmouth College 2. ByteDance Inc.

* This work is done during Yiren Jian's internship at ByteDance Inc.

*

Introduction

•Vision-language generative learning: a growth trajectory

*

Introduction

•Vision-language generative learning: a growth trajectory

Introduction

•Vision-language generative learning: a growth trajectory

[3] Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models." ICML 2023.

Introduction

•Training challenges when connecting vision-language modalities

SimVLM
 As pioneers, they try to connect vision-language modalities by training from scratch on billion-scale image-text pairs.

 CoCa
 Training from scratch on billion-scale image-text pairs.

Training cost is the challenge!

• BLIP-2 \longrightarrow Later, BLIP-2 applies existing <u>well-pretrained ViT</u> and <u>LLM</u>, then align the two backbones, via a novel connector <u>Q-former</u>.

Introduction

•A closer look on BLIP-2's <u>Q-former</u>: demanding an extra stage-1 training

Introduction

•Our question:

how to replace Q-former for further efficiency?

EVLGen: an <u>end-to-end</u> multimodal alignment

Token Merging [4] Transformer (TomeFormer) aggregates (cosine) similar visual tokens at each layer.

EVLGen: an <u>end-to-end</u> multimodal alignment

For more spatial redundancy, temporal contextualize can pool multiple frames, then add back to each original frame.

EVLGen: an <u>end-to-end</u> multimodal alignment

- •Summarization of EVLGen:
 - how it streamlines the pre-training?
 - Vision data (image, video...) is naturally redundant
 - Token-merging reduces learning space
 - the single-stage, single-loss training mechanism

Experiment

•An intuitive case study on token merging

Figure 4: Pre- and post-training visualization of merged tokens in E_2VL_{Gen} . The visual features compressed via token merging exhibit semantic informativeness even prior to training. This inherent characteristic facilitates E_2VL_{Gen} 's ability to converge quickly in an end-to-end training setup.

Figure 5: Additional pre- and post-training visualization of merged tokens in E_2VL_{Gen} .

Experiment (8× A100-80G)

•Overall Performance Comparison (1/2 image)

Models	# pre-train image-text	# trainable params	# stage-1 steps	# stage-2 steps	VQAv2 val	GQA test-dev	OK-VQA test	COCO val	Clock time
VL-T5	9.2M	224M	-	-	13.5	6.3	5.8	-	-
FewVLM	9.2M	740M	-	-	47.7	29.3	16.5	-	-
Frozen	3M	40M	-	-	29.6	-	5.9	-	-
VLKD	3M	406M	-	-	42.6	-	13.3	-	-
BLIP-2	$104 M^{\dagger}$	110 M+ [‡]	-	80k/250k*	X	×	×	×	×
BLIP-2	104M	110 M +	250k	80k	44.6	30.6	26.0	137.7	234 hrs
EVL _{Gen}	104M	55M		90k	45.9	30.6	25.8	134.0	47 hrs
EVL _{Gen}	11 M	110 M	-	150k	46.3	30.0	23.0	135.1	80 hrs
EVL _{Gen}	104M	110 M	_	150k	46.9	30.8	24.8	137.0	80 hrs
EVL _{Gen}	104M	110M	-	250k	48.4	30.9	27.2	139.1	133 hrs

Table 1: Comparison of methods on zero-shot VQA and MSCOCO captioning (CIDEr) tasks without additional fine-tuning. Both BLIP-2 and EVL_{Gen} use OPT-2.7b as the LLM decoder. *: *BLIP-2 without extensive stage-1 pre-training will collapse*. [†]: We were only able to download approximately 81% of LAION-115M and 78% of CCS-14M from the CapFilt dataset. [‡]: BLIP-2 incorporates an additional set of 32 learnable queries, each with a dimension of 768.

Experiment

•Overall Performance Comparison (2/2 image)

	LLM	Model	С	B4	М	R
NoCaps	OPT	BLIP-2 EVL _{Gen}	112.2 117.4	44.4 45.9	29.5 30.3	59.7 61.1
	Vicuna	BLIP-2 EVL _{Gen}	115.6 119.0	45.3 45.9	30.3 30.6	60.6 61.5
Flickr30K	OPT	BLIP-2 EVL _{Gen}	77.1 82.0	28.7 30.0	23.9 24.5	51.6 52.4
	Vicuna	BLIP-2 EVL _{Gen}	80.0 81.8	30.1 30.3	24.8 24.5	52.1 52.2

Table 2: Comparison of different models' performance on zero-shot NoCaps and Flickr30K captioning. C \rightarrow CIDEr, B4 \rightarrow BLEU-4, M \rightarrow METEOR, R \rightarrow ROUGE

Experiment

•Overall Performance Comparison (1/1 video)

Models	С	B4	М	R
Baseline (concat)	65.5	44.4	31.9	64.1
Baseline (mean)	67.8	47.3	32.2	65.0
EVL _{Gen} -image	68.4	47.6	32.4	65.3
EVL _{Gen} -video	69.8	48.3	32.6	65.8
EVL _{Gen} -video-scst	74.0	49.2	33.0	66.5
Video-LLaMA	59.3	47.7	29.6	63.7
VideoChat	58.0	46.5	29.5	63.4
VideoCoCa (open)	63.0	48.5	31.4	64.8

Models	С	B4	М	R
Video-LLaMA	121.2	61.6	40.3	77.8
VideoChat	118.4	64.1	41.0	78.7
VideoCoCa (open)	150.9	67.7	45.3	81.9
EVL _{Gen} -video	158.2	68.4	46.8	83.1

Table 4: Comparison of different models' performance on MSVD video captioning.

Table 3: Comparison of different models' performance on MSR-VTT video captioning. Models are pre-trained using 2 million video-text pairs from WebVid dataset, except for image pre-trained EVL_{Gen} -image.

Experiment (8× A100-80G)

Training time comparison

Models	Stage 1 (MACs)	Stage 1 steps	Stage 2 (MACs)	Stage 2 steps	Models	Stage 1 time /5k	Stage 2 time /5k	Clock time
BLIP-2	36.7G	250k	6.28G	80k	BLIP-2	3 hrs 50 min	2 hrs 40 min	234 hrs
EVL _{Gen}	-	2 - 2	11.9 G	250k	EVL _{Gen}	-	2 hrs 45 min	133 hrs
EVL _{Gen}	-	-	11.9G	150k	EVL _{Gen}	-	2 hrs 45 min	80 hrs
EVL _{Gen55M}	-	-	5.6G	90k	EVL _{Gen}	55M -	2 hrs 35 min	47 hrs

Table 9: **Multiply–accumulate operations** (MACs)Table 10: Training time comparison of BLIP-2 and comparison of Q-Former (of BLIP-2) and TomeFormer EVL_{Gen} when utilizing OPT-2.7b as the LLM. (of EVL_{Gen}) when utilizing OPT-2.7b as the LLM.

1/3 to 1/6 of the training budget required by BLIP-2!

Experiment (8× A100-80G)

•How many tokens can be merged?

Figure 3: Trade-off between MSCOCO captioning scores (depicted in red) and GPU training time (depicted in blue) as a function of the number of tokens merged (r) in TomeFormer.

