

Contributions

A Supervised Contrastive Learning framework for prompt-based feature An effective data augmentation method using prompts for contrast

Overview

Different kinds of fine tuning

[4] Wei, Jason, and Kai Zou. "EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks." EMNLP-*IJCNLP*. 2019

NAACL2022 Contrastive Learning for Prompt-based Few-shot Language Learners Yiren Jian, Chongyang Gao, Soroush Vosoughi

Overview of our proposed method.

great one

						• • • • • • • • •		Algorithm	With demonstrations vs.					
ew-shot learners								Algorithm 1 Our method	Without demonstrations					
stive learning with prompt-based learners.						d lear	ners.	$\frac{1}{1 Max Step} = 1000.$	Task	LM-BFF	LM-BFF	PET	PET	
		••••					• • • • • • • • • • • •	2 I M I enguage model			+ ours	00.4.(1.0)	+ ours	
								2: LM: Language model,	SST-2 (acc)	89.2 (1.3)	90.6 (0.1) 00.4 (1.1)	88.4 (1.0)	89.9 (0.6)	
								3: Train_Set: Training set,	Subj (acc) SST-5 (acc)	66.0 (5.5) 47 9 (0.8)	49 5 (1.1)	460(0.9)	48.8 (1.2)	
								Sample: Randomly sampling function,	CoLA (Matt.)	6.1 (5.3)	10.2 (5.8)	3.5 (3.4)	5.9 (3.3)	
SupCon(-)								5: Concatenate: The function to concatenate	TREC (acc)	82.8 (3.1)	83.3 (1.5)	77.8 (9.1)	82.3 (4.6)	
								two strings	MNLI (acc)	61.0 (2.1)	64.0 (2.0)	58.2 (1.1)	58.9 (3.1)	
					ſ	••		CITIC TO	MNLI-mm (acc)	62.5 (2.1)	65.5 (2.7)	59.8 (1.2)	61.0 (3.3)	
MLM bead terrible √						reat		6: <i>CE</i> : Cross Entropy loss,	SNLI (acc)	60.9 (2.4) 60.7 (1.7)	69.9 (2.4) 66 4 (3.5)	63.1(2.5) 61.5(3.3)	63.7 (3.9) 63.5 (3.7)	
						errible	1	SupCon: Supervised Contrastive loss.	OOP (acc)	62.5(2.6)	68.8 (3.8)	61.9(3.5)	65.7 (4 3)	
								8: for i in Max Step do	RTE (acc)	64.3 (2.7)	65.1 (3.5)	60.9 (4.7)	65.1 (3.5)	
					Ċ			9. sent $u = Sample(Train Set)$	MRPC (F1)	75.5 (5.2)	78.2 (3.1)	70.6 (6.0)	75.7 (6.1)	
	<u> </u>		- -				ı	$J_{0} = J_{0} = Comple(Train_Set)$	MR (acc)	83.3 (1.4)	85.8 (0.6)	85.0 (0.6)	85.2 (0.9)	
	Su	DCon(+)		Prir	nary pr	ompt	$10: aemo_1 = Sample(Train_Set)$	MPQA (acc)	83.6 (1.8)	84.6 (1.5)	81.3 (2.6)	81.8 (2.4)	
	C		9		Auxi	iliary pi	ompts	11: $demo_2 = Sample(Train_Set)$		88.9 (1.0)	89.4 (1.0)	89.3 (1.0)	90.5 (0.5)	
								12: $input_1 = concatenate(sent, demo_1)$	Few-shot res	sults of ba	seline me	thods and	lours.	
U Hidden state for (MASK)						e for (IN	IASKJ	13: $input_2 = concatenate(sent, demo_2)$						
								Learning from MLM Loss	Average	e impro	vemer	115		
								14: $output_1 = LM(input_1)$	4.5					
Random								15: $L_{MLM} = CE(output_1, y)$						
templates/demonstrations vs								16: $L_{MLM}.backward()$						
								17: optimizer.step()	4.0					
Task	LM-BFF	SR	RI	RS	RD	EDA	ours	Learning from SupCon Loss		_				
551-2 Subi	89.2 88.6	90.7	90.8	90.7 01 0	90.7	90.5 80.1	90.6 00.4	18: $output_2 = LM(input_2)$	ent					
SUUJ SST-5	47 9	90.0 47 7	49.2	48.2	47 9	467	49.5	10: $L_{\alpha} = SunCon(output, output)$	Ê 25					
CoLA	6.1	5.8	6.5	4.9	4.0	3.9	10.2	$L_{SupCon} = DupCon(output_1, output_2)$	S 3.5					
TREC	82.8	78.1	80.7	79.0	80.7	80.6	83.3	20: $L_{SupCon}.backward()$	Ja l					
MNLI	61.0	61.8	62.4	61.0	58.1	58.9	64.0	21: optimizer.step()						
-mm	62.5	63.6	64.8	62.7	60.3	60.9	65.5	22: end for	କ୍ଳ 3.0					
SNLI	66.9	63.1	66.4	67.2	65.2	62.2	69.9		ers					
QNLI	60.7	65.3	65.3	67.4	64.8	62.5	66.4^\dagger		₹					
QQP	62.5	64.5	65.8	68.0	63.2	61.0	68.8	Ensemble vs. our single model						
RTE	64.3	61.4	61.4	61.3	62.1	61.1	65.1	Task LM-BFF LM-BFF	2.5					
MRPC	75.5	77.6	77.7	79.3	78.7	79.1	78.2^{\dagger}	+ours ensemble						
MR	83.3	85.5	85.5	85.5	85.3	85.6	85.8	SST-5 (acc) 49.5 (1.1) 48.0 (0.8)						
MPQA	83.6	82.2	84.4	84.4	83.9	82.8	84.6	CoLA (Matt.) 10.2 (5.8) 7.5 (4,7)	2.0					
CR	88.9	88.9	88.2	88.3	88.5	87.1	89.4	MNLI (acc) 63.3 (2.4) 62.2 (1.8) MNLI mm (acc) 65.1 (2.4) 64.0 (1.8) MNLI mm (acc) 65.1 (2.4) 64.0 (1.8)	1 2	3 4 5 6	789	10 11 12 13	3 14 15	
Comparing our random templates/demonstrations							ations	QNLI (acc) = 65.1 (2.4) = 64.0 (1.8) = 66.4 (3.5) = 63.8 (2.7)	Number of Tasks					
as data augmentation to Synonym Replacement							ment	MR (acc) 85.8 (0.6) 85.7 (0.7)		and impro	Nomonto	achiourd	by our	
(SR), Random Insertion (RI), Random Swapping							opina	Comparing our single model trained with Sup-				by our		
(RS), Random Deletion (RD) and FDA [4]								Con loss to an ensemble of 20 models		m the top	r narues	I IASKS		
						. L . J.			• •					

DARTMOUTH

Department of Computer Science

Northwestern ENGINEERING

Computer Science

