

DARTMOUTH Department of Computer Science Northwestern ENGINEERING Computer Science

Contrastive Learning for Prompt-based Few-shot Language Learners

Yiren Jian

Chongyang Gao

Soroush Vosoughi

Northwestern

Conventional finetuning, prompts and demonstrations

Contrastive Learning for Prompt-based Few-shot Language Learners

Besides the standard prompt-base MLM loss on label words "great" and "terrible", we introduce a SupCon loss on multi-views of input text. The positive pair is sentences (with sampled templates and/or demonstrations) in the same class, e.g. sent1 and sent3, or itself with a different template and demonstrations, e.g. sent1 and sent2. The negative sentence pair is input sentences (with sampled templates and/or demonstrations) in different classes, e.g. sent1 and sent0.

Experimental results

Task	LM-BFF	LM-BFF PET		PET	
		+ ours		+ ours	
SST-2 (acc)	89.2 (1.3)	90.6 (0.1)	88.4 (1.0)	89.9 (0.6)	
Subj (acc)	88.6 (3.3)	90.4 (1.1)	89.2 (1.5)	90.6 (1.6)	
SST-5 (acc)	47.9 (0.8)	49.5 (1.1)	46.0 (0.9)	48.8 (1.2)	
CoLA (Matt.)	6.1 (5.3)	10.2 (5.8)	3.5 (3.4)	5.9 (3.3)	
TREC (acc)	82.8 (3.1)	83.3 (1.5)	77.8 (9.1)	82.3 (4.6)	
MNLI (acc)	61.0 (2.1)	64.0 (2.0)	58.2 (1.1)	58.9 (3.1)	
MNLI-mm (acc)	62.5 (2.1)	65.5 (2.7)	59.8 (1.2)	61.0 (3.3)	
SNLI (acc)	66.9 (2.4)	69.9 (2.4)	63.1 (2.5)	65.7 (3.9)	
QNLI (acc)	60.7 (1.7)	66.4 (3.5)	61.5 (3.3)	63.5 (3.7)	
QQP (acc)	62.5 (2.6)	68.8 (3.8)	61.9 (3.5)	65.7 (4.3)	
RTE (acc)	64.3 (2.7)	65.1 (3.5)	60.9 (4.7)	65.1 (3.5)	
MRPC (F1)	75.5 (5.2)	78.2 (3.1)	70.6 (6.0)	75.7 (6.1)	
MR (acc)	83.3 (1.4)	85.8 (0.6)	85.0 (0.6)	85.2 (0.9)	
MPQA (acc)	83.6 (1.8)	84.6 (1.5)	81.3 (2.6)	81.8 (2.4)	
CR (acc)	88.9 (1.0)	89.4 (1.0)	89.3 (1.0)	90.5 (0.5)	

Our framework can improve two different kinds of prompt-based few-shot learning: the one with demonstrations (LM-BFF) and the other one without demonstration (PET).

Ablations: different augmentations for multi-views in contrastive learning

Task	LM-BFF	SR	RI	RS	RD	EDA	ours
SST-2	89.2	90.7	90.8	90.7	90.7	90.5	90.6
Subj	88.6	90.6	90.8	91.0	90.5	89.1	90.4
SST-5	47.9	47.7	49.2	48.2	47.9	46.7	49.5
CoLA	6.1	5.8	6.5	4.9	4.0	3.9	10.2
TREC	82.8	78.1	80.7	79.0	80.7	80.6	83.3
MNLI	61.0	61.8	62.4	61.0	58.1	58.9	64.0
-mm	62.5	63.6	64.8	62.7	60.3	60.9	65.5
SNLI	66.9	63.1	66.4	67.2	65.2	62.2	69.9
QNLI	60.7	65.3	65.3	67.4	64.8	62.5	66.4^{\dagger}
QQP	62.5	64.5	65.8	68.0	63.2	61.0	68.8
RTE	64.3	61.4	61.4	61.3	62.1	61.1	65.1
MRPC	75.5	77.6	77.7	79.3	78.7	79.1	78.2^{\dagger}
MR	83.3	85.5	85.5	85.5	85.3	85.6	85.8
MPQA	83.6	82.2	84.4	84.4	83.9	82.8	84.6
CR	88.9	88.9	88.2	88.3	88.5	87.1	89.4

We show that our method of appending sampled templates and demonstrations which would not hurt the semantic and completeness of sentences outperforms augmentations at lexical space.

DARTMOUTH Department of Computer Science

Northwestern ENGINEERING

Thank you!

Northwestern