

Label Hallucination for Few-Shot Classification DARTMOUTH

Yiren Jian, Lorenzo Torresani

Department of Computer Science

Few-Shot Learning

Few-shot learning aims at adapting knowledge extracted from data-rich base categories to novel categories where examples are limited [1,2].

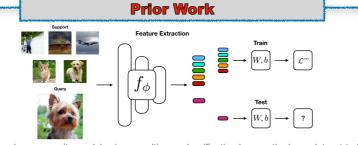
Visualization and Intuition

Our method trains the model on the large-scale base dataset automatically re-labeled according to the novel classes.

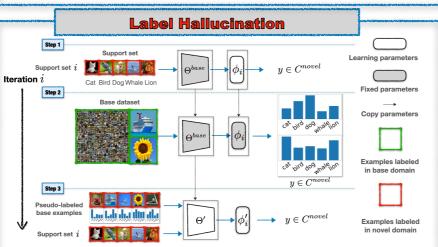
- First row shows one-shot examples of 5 novel classes. Underneath each one-shot image, we show the 3 base images receiving the largest pseudo-label scores.
- Our method assigns novel-class labels to base images that match the few-shot examples in terms of background, shape, spatial layout, color, or texture.

References

- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C Finn, P Abbeel, S Levine. In ICML, 2017.
- (2)Prototipical Networks for Few-shot Learning. J Snell, K Swersky, R Zemel. In NeurIPS, 2017.
- Rethinking Few-Shot Image Classification: a Good Embedding is (3) All You Need? Y Tian, Y Wang, D Krishnan, J Tenenbaum, P Isola, In ECCV. 2020.
- A Baseline for Few-shot Image Classification. G Dhillon, P. (4) Chaudhari, A Ravichandran, S Soatto, in ICLR, 2020.



- Train a large-capacity model using a multi-way classification loss on the base dataset to learn a discriminative representation. Then:
- Method 1: Train a linear classifier on top of the frozen representation for each set of novel classes [3]. Weakness: limited learning capacity
- Method 2: Finetune entire model on the novel set [4]. Weakness: high risk of overfitting



- 1. Learn linear classifier for novel classes on top of pretrained backbone.
- Pseudo-label the base dataset using the label space of the novel classes.
- 3. Finetune the entire model on the novel examples and the pseudo-labeled base dataset

Ablation: Learning embedding or classifier with LabelHalluc

Support: learning	Support		Base		miniImageNet	
with support set. Base: learning	Net	Clf	Net	Clf	1-shot	5-shot
with base set	\checkmark	\checkmark			61.43	80.03
• Net: updating network encoder	\checkmark	\checkmark		\checkmark	63.59	81.53
	\checkmark	\checkmark	\checkmark		66.18	84.36
Clf: updating the last classifier	\checkmark	\checkmark	\checkmark	\checkmark	67.50	85.60

The largest improvements come from learning the capacity embedding network, and fine-tuning both the embedding and classifier vields best results.

miniImageNet and tieredImageNet

model		miniImag	eNet 5-way	tieredImageNet 5-way		
	backbone	1-shot	5-shot	1-shot	5-shot	
DeepEMD [56] (CVPR'20)	ResNet-12	65.91 ± 0.82	82.41 ± 0.56	71.16 ± 0.87	86.03 ± 0.58	
RFS-simple [48] (ECCV'20)	ResNet-12	62.02 ± 0.63	79.64 ± 0.44	69.74 ± 0.72	84.41 ± 0.55	
RFS-distill [48] (ECCV'20)	ResNet-12	64.82 ± 0.82	82.41 ± 0.43	71.52 ± 0.69	86.03 ± 0.49	
AssoAlign [1] (ECCV'20)	ResNet-18 [†]	59.88 ± 0.67	80.35 ± 0.73	69.29 ± 0.56	85.97 ± 0.49	
AssoAlign [1] (ECCV'20)	WRN-28-10 [‡]	65.92 ± 0.60	82.85 ± 0.55	74.40 ± 0.68	86.61 ± 0.59	
SKD-GEN1 [35] (Arxiv'20)	ResNet-12	$66.54 \pm 0.97^{\$}$	$83.18 \pm 0.54^{\$}$	$72.35 \pm 1.23^{\$}$	$85.97 \pm 0.63^{\$}$	
MELR [14] (ICLR'21)	ResNet-12	67.40 ± 0.43	83.40 ± 0.28	72.14 ± 0.51	87.01 ± 0.35	
IEPT [57] (ICLR'21)	ResNet-12	67.05 ± 0.44	82.90 ± 0.30	72.24 ± 0.50	86.73 ± 0.34	
IER-distill [39] (CVPR'21)	ResNet-12	$66.85 \pm 0.76^{\$}$	$84.50 \pm 0.53^{\$}$	$72.74 \pm 1.25^{\$}$	$86.57 \pm 0.81^{\$}$	
Label-Halluc (pretrained w/ SKD-GEN1)	ResNet-12	67.50 ± 1.01	85.60 ± 0.52	72.80 ± 1.20	86.93 ± 0.60	
Label-Halluc (pretrained w/ IER-distill)	ResNet-12	$\textbf{68.28} \pm \textbf{0.77}$	$\textbf{86.54} \pm \textbf{0.46}$	$\textbf{73.34} \pm \textbf{1.25}$	$\textbf{87.68} \pm \textbf{0.83}$	

Experiments

Comparison of our method (Label-Halluc) against the state-of-the-art on minilmageNet and tieredImageNet.

CIFAR-FS and FC100

		CIFAR-	FS 5-way	FC-100 5-way		
model	backbone	1-shot	5-shot	1-shot	5-shot	
DeepEMD [56] (CVPR'20)	ResNet-12	-	-	46.5 ± 0.8	63.2 ± 0.7	
RFS-simple [48] (ECCV'20)	ResNet-12	71.5 ± 0.8	86.0 ± 0.5	42.6 ± 0.7	59.1 ± 0.6	
RFS-distill [48] (ECCV'20)	ResNet-12	73.9 ± 0.8	86.9 ± 0.5	44.6 ± 0.7	60.9 ± 0.6	
AssoAlign [1] (ECCV'20)	ResNet-18 [‡]	-	-	45.8 ± 0.5	59.7 ± 0.6	
SKD-GEN1 [35] (Arxiv'20)	ResNet-12	$76.6\pm0.9^{\S}$	$88.6\pm0.5^{\S}$	$46.5 \pm 0.8^{\$}$	$64.2\pm0.8^{\S}$	
InfoPatch [18] (AAAI'21)	ResNet-12	-	-	43.8 ± 0.4	58.0 ± 0.4	
IER-distill [39] (CVPR'21)	ResNet-12	$77.6\pm1.0^{\$}$	$89.7\pm0.6^{\S}$	$48.1\pm0.8^{\S}$	$65.0\pm0.7^{\S}$	
Label-Halluc (pretrained w/ SKD-GEN1)	ResNet-12	77.3 ± 0.9	89.5 ± 0.5	47.3 ± 0.8	67.2 ± 0.8	
Label-Halluc (pretrained w/ IER-distill)	ResNet-12	$\textbf{78.0} \pm \textbf{1.0}$	$\textbf{90.5} \pm \textbf{0.6}$	$\textbf{49.1} \pm \textbf{0.8}$	$\textbf{68.0} \pm \textbf{0.7}$	

Comparison of our method (Label-Halluc) against the state-of-the-art on CIFAR-FS and FC-100

Ablation: Soft	or Ha	ard P	seud	lo-lab	els]
	mini-IN		CIFAR-FS		FC100	
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Transfer w/ frozen backbone (LR)	66.54	83.18	76.6	88.6	46.5	64.2
Transfer w/ finetuning	61.43	80.03	68.8	85.7	43.1	61.9
Hard LabelHalluc + finetuning	65.04	80.68	75.3	85.3	44.6	62.4
Soft LabelHalluc + finetuning	67.50	85.60	77.3	89.5	47.3	67.2

Soft Label Hallucination works the best, outperforming Hard Label Hallucination and the frozen backbone baseline.

Transfer v

Ablation: Different Pre-training

	miniImageNet		CIFAR-FS		FC100	
	LR	ours	LR	ours	LR	ours
RFS-simple [48]	79.33	81.75	86.6	87.3	58.1	61.2
RFS-distill [48]	81.15	82.74	86.5	87.1	61.0	63.9
SKD-gen0 [35]	82.31	84.14	87.8	88.8	62.8	66.5
SKD-gen1 [35]	83.18	85.60	88.6	89.5	64.2	67.2
IER-gen0 [39]	83.88	85.86	89.5	90.2	63.8	67.2
IER-distill [39]	84.50	86.54	89.7	90.5	65.0	68.0
Average improvement		+2.05		+0.8		+3.2

Our LabelHalluc can apply to different pretraining methods. Experiments with six different pretrainings show the consistent improvements enabled by our method.